
Math Modeling, Week 2

Full RL problem
Learning to predict reward
Multiple actions
State dynamics

Multiple actions
Decision-making
Prediction for each action, P(A)
Action-selection rules
Max selection: a = argmaxA {P(A)}
Exploration/exploitation dilemma
 Use predictions, but give all actions a chance
Luce choice: Pr[a=A] µ P(A)
Problem: negative values, interval scale
Monotonic transform: Pr[a=A] µ f(P(A))
Softmax: Pr[a=A] µ eP(A)/T

Input always positive
Only differences matter, P(A) – P(A')
Temperature parameter T

State dynamics
Stimuli predict future stimuli, not just immediate rewards
Conditioned reinforcement
Evaluate outcomes based on what they predict
 S1 followed by S2 ® V(S1) = R(S1) + V(S2)
 Circular; well-defined?
Episodic tasks

Tree example
V anchored on terminal states

Continuing tasks: (effectively) infinite reward sequence
Return: R = St Rt×gt
Temporal discounting
 Exponential – strong psychological assumption
 Horizon parameter g Î [0,1]
Value function: V(S) = E[R|s0 = S]
Recursion: V(st) = Rt + g×V(st+1)
Markov process
State space, transition matrix
 T(S,S') = Pr[st+1 = S' | st = S]
Also: reward function R(S)
Bellman equation: V(S) = R(S) + g×SS'T(S,S')V(S')
Direct solution
 V = R + gTV ® V = (I - gT)-1R

Exists if g < 1 (eigenvalue argument)
Gridworld MP batch demo

Learning from prediction error
 Prediction is V(st)
 Outcome is Rt, st+1 ® Rt + gV(st+1)
 DV(st) = e[Rt + gV(st+1) – V(st)]
Gridworld MP incremental demo
Markov Decision Process
Action selection + State dynamics
 Reward R(S,A)
 Transitions T(S,A,S') = Pr[st+1 = S' | st = S, at = A]
Tree example, with actions
 Value of state is value of best action
State-action values
 Q(S,A) = E[R|s0 = S, a0 = A]
Reciprocal recursive equations
 Q(S,A) = R(S,A) + SS' g×SS'T(S,A,S')V(S')
 V(S) = maxA Q(S,A)
 Values assuming optimal action in future
Q-learning
 Prediction Q(st,at)
 Outcome Rt, st+1 ® Rt + g×maxA Q(st+1,A)
 DQ(st,at) = e[Rt + g×maxA Q(st+1,A) – Q(st,at)]
 Converges to optimal action values
Gridworld MDP simulation

Exercises
1. Show that probability matching is a special case of Luce choice. That is, consider a task with
two actions, A and B, exactly one of which is correct on each trial. Probability matching means
making a prediction P(A) for the probability that A will be correct, and choosing actions with
probabilities Pr[a = A] = P(A) and Pr[a = B] = 1 – P(A). (This is what the simulation from last
week did.) Assuming a reward of 1 for being correct and 0 for being incorrect, work out the
expected rewards for both actions according to P(A), and then derive the action probabilities
given by the Luce choice rule. If you’re enjoying this, work out the action probabilities for
softmax, and for Luce and softmax under different reward values for right/wrong (instead of
1/0).

2. Special cases of state-value learning (DV(st) = e[Rt + gV(st+1) – V(st)])
(a) What happens when g = 0? How does the model compare to the simpler model from last
week?
(b) What happens when there’s only one state? Write a simplified version of the learning rule for
that case. What does the value converge to, i.e. when is it in equilibrium?
(c) For the one-state case, define a new variable W = (1-g)V. How does W behave?

3. Think of some ways to make the Q-learner smarter in the Gridworld task. If you can,
implement one and try it out.

